Molecular dynamics simulations of shear-induced thermophoresis and non-Newtonian flow in compressible fluids
نویسندگان
چکیده
We use molecular dynamics simulations to study the behavior of a compressible Lennard-Jones fluid in simple shear flow in a two-dimensional nanochannel. The system is equilibrated in the fluid phase close to the triple point at which gas, liquid and solid phases coexist and is subjected to steady shear in Couette geometry. It is observed that at higher shear rates, the system develops a density gradient perpendicular to the direction of flow and exhibits solid-like layering near the boundaries. Both the number of solid-like layers and the number of layers that move with the velocity of the neighboring wall, increase with the shear rate. We argue that the inhomogeneous density profile develops as the consequence of thermophoresis due to the non-uniform temperature profile produced by shear-induced viscous heating in the simulated flow cell. The above phenomena are accompanied by non-Newtonian effects such as nonlinear velocity profiles, inhomogeneous stress distributions and shear rate dependent viscosity which exhibits shear thinning followed by shear thickening as the shear rate is increased. The connection between these phenomena is discussed.
منابع مشابه
Time-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels
The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...
متن کاملRheological Behavior of Water-Ethylene Glycol Based Graphene Oxide Nanofluids
Traditionally water-ethylene glycol mixture based nanofluids are used in cold regions as a coolant in the car radiators. In the present study, the rheological properties of water-ethylene glycol based graphene oxide nanofluid are studied using Non-Equilibrium Molecular Dynamics (NEMD) method at different temperatures, volume concentrations, and shear rates. NEMD simulations are perfor...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملAnalysis of Pseudo-Turbulence Flow Induced by Bubble Periodic Formation in Non-Newtonian Fluids
Laser Doppler Velocimetry (LDV) has been employed to determine pseudo-turbulence characteristics of the flow field around bubble train forming in non-Newtonian caboxymethylcellulose (CMC) aqueous solution at low gas flow rate condition. The Reynolds stress and turbulent intensity of the liquid were investigated by means of Reynolds time-averaged method. The experimental results show that ax...
متن کاملNumerical investigation of thermal mixing of shear thinning fluids in one-way opposing jets
In recent years, impinging streams have received increasing interest for their high efficiency in heat and mass transfer. This numerical study was conducted to investigate flow and heat transfer characteristics of one-way opposing jets of non-Newtonian fluids. Effects of Reynolds number impinging angle, momentum ratio and flow behavior index on mixing index were evaluated. The results showed im...
متن کامل